Super-resolution for unregistered satellite images
نویسنده
چکیده
منابع مشابه
L1 regularized super-resolution from unregistered omnidirectional images
In this paper, we address the problem of super-resolution from multiple low-resolution omnidirectional images with inexact registration. Such a problem is typically encountered in omnidirectional vision scenarios with reduced resolution sensors in imperfect settings. Several spherical images with arbitrary rotations in the SO(3) rotation group are used for the reconstruction of higher resolutio...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملJoint demosaicing and super-resolution imaging from a set of unregistered aliased images
We present a new algorithm that performs demosaicing and super-resolution jointly from a set of raw images sampled with a color filter array. Such a combined approach allows us to compute the alignment parameters between the images on the raw camera data before interpolation artifacts are introduced. After image registration, a high resolution color image is reconstructed at once using the full...
متن کاملSuper-Resolution from Unregistered Aliased Images
v Résumé vii Acknowledgments ix Frequently Used Terms, Abbreviations, and Notation xi
متن کاملA Deep Model for Super-resolution Enhancement from a Single Image
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...
متن کامل